
[Team 22] Collection Style Transfer
Vaibhav Choudhary (vchoudh2), Mahmoud Abdelkhalek (maabdelk), Sharvil Vijagish Mainkar (smainka)

Abstract—Our goal in this project was to apply some of the
concepts that we learned in ECE 542, including Convolutional
Neural Networks (CNN) and Generative Adversarial Networks
(GAN). We used a modified GAN called CycleGAN to perform
collection style transfer, where an image is re-drawn in the style
of a particular artist based on a collection of input images. We
also used a CNN to quantitatively measure the style of images
generated by CycleGAN and to compare them to a baseline
image. We successfully show that the CNN is able to differentiate
between images from a specific artist and random images, and
hence it is also able to objectively measure the style of images
generated by CycleGAN. We also show that our CycleGAN is able
to perform better than a pre-trained CycleGAN made available
by its original creators on certain datasets.

I. MODEL TRAINING AND SELECTION

In [1], the authors present a network architecture called
CycleGAN that is able to perform collection style transfer,
where an image is transformed from a domain A to a different
domain B and vice versa. Images are in the same domain if
they share a general style. For example, several paintings from
Vincent van Gogh exist in the same domain, while paintings
from Vincent van Gogh and Claude Monet exist in different
domains.

Unlike neural style transfer [2], where the content of one
image and the style of another image are combined to synthe-
size a new image, CycleGAN learns the mapping between
two image collections, such that an image synthesized by
CycleGAN is able to capture the style of an entire collection
of images. Using the PyTorch Python package [3], CycleGAN
was re-created and trained on multiple datasets to perform
collection style transfer. Next, the VGG CNN shown in [2] was
used to measure the style losses of original paintings, images
transformed by CycleGAN, and the original images before
their transformation to determine if the images transformed
by CycleGAN inherited the style of the target domain.

A. The Model

A GAN involves a battle between two players: a generator
and a discriminator. The generator attempts to convert random
noise into images that are similar to the images in the original
dataset, and the discriminator attempts to determine whether an
image comes from the original dataset or from the generator,
as shown in figure 1.

In practice, both the generator and the discriminator are im-
plemented using CNNs. The generator is similar to a decoder
in an autoencoder, as it consists of de-convolutions to obtain
an output image from a random input vector. Conversely,
the discriminator consists of convolutions and max-pooling to
perform classification. However, in order to perform collection
style transfer, this GAN architecture needs to be modified.

Fig. 1. The generator and discriminator in a GAN.

More precisely, an ”encoding” and ”transformation” stage are
added to the generator, as shown in figure 2.

Fig. 2. Overview of the CycleGAN generator.

An input image from domain A is first encoded into a high-
level representation with a vector in a latent space. Next, this
vector is mapped to a different latent space corresponding
to the images in domain B during the transformation stage.
Finally, the transformed vector is decoded as in the original
GAN architecture to obtain a generated image in domain B.
The full modified generator architecture is shown in figure 3.

The corresponding DS Block, T Block, and US Block
parts of the generator are shown in figures 4, 5, and 6
respectively. The Instance Normalization layer replaces the
typical Batch Normalization layer for both CycleGAN and the
Fast Style Transfer (FST) network discussed in section I-B. As
discussed in [4], this leads to qualitative improvements in the
generated images.

In addition to modifying the generator, the discriminator
was also modified. As discussed in [5], using a discriminator
that is able to classify patches of the input image rather
than individual pixels allows it to distinguish style rather than
content. More specifically, given an N ×M input image, the
discriminator will output a P × Q image (P < N ,Q < M ),
where every pixel classifies whether every 70×70 patch in the
input image is real or fake. The full discriminator architecture
is shown in figure 7. The CycleGAN discriminator uses a
similar DS Block as in the generator, with the exception that
a Leaky ReLU activation function is used instead.



Fig. 3. Details of the CycleGAN generator.

Fig. 4. The DS Block used in the CycleGAN generator and discriminator. A
Leaky ReLU activation function with α = 0.2 was used for the discriminator.

Fig. 5. The T Block used in the CycleGAN generator.

CycleGAN consists of 2 generators and 2 discriminators.
Each generator-discriminator pair is used to transform an
image from one domain to the other and to classify whether an
image is real or fake. Let Glk(·) be the output of the generator
that transforms an image from domain l to domain k, Dk(·) be
the output of the discriminator that classifies images in domain
k, Xl be an image from domain l, and Yj be an image of the
same size as Dk(·) filled with j’s. Since the generator should
be able to fool the discriminator, then for a given batch of
images, if N is the batch size, C is the number of channels,
H is the image height, and W is the image width, then both
generators and discriminators are trained using a mean squared
error loss function, as shown in equation 1.

Fig. 6. The US Block used in the CycleGAN generator.

Fig. 7. The CycleGAN discriminator architecture.

ε(l, k, j) = (Yj −Dk(Glk(Xl)))
2

MSE(l, k, j) =
1

N · C ·H ·W
·
∑

N,C,H,W

ε(l, k, j) (1)

For example, the generator that transforms an image from
domain A to domain B is trained with the loss function
MSE(A,B, 1), while the discriminator that classifies images
in domain A is trained with the loss function MSE(B,A, 0)
since it has to be able to distinguish between real images and
fake images created by the generator.

In addition to the mean squared error loss, both generators
are trained using two different mean absolute error losses: a
cycle loss (CL) and an identity loss (IL). The cycle loss ensures
that image content is not lost when transforming from one
domain to another. This is similar to translating an English
sentence to French and back again. The resulting sentence
should be the same as the original sentence. The identity loss



TABLE I
HYPER-PARAMETER TUNING RESULTS AFTER 50 EPOCHS OF TRAINING (BASELINE 1)

Painting
Number of

Optimizer
Learning Learning Rate Painting CycleGAN Original Image

T Blocks Rate Scheduler Style Loss Style Loss Style Loss

Monet
3 SGD 0.0008 Scheduler A 73.38 75.74 77.93
9 Adam 0.0002 Scheduler B 73.38 75.17 77.93

van Gogh
3 SGD 0.0008 Scheduler A 18.74 228.07 174.27
9 Adam 0.0002 Scheduler B 18.74 197.30 174.27

Ukiyo-e
3 SGD 0.0008 Scheduler A 3.38 4.25 5.10
9 Adam 0.0002 Scheduler B 3.38 4.66 5.10

Cezanne
3 SGD 0.0008 Scheduler A 1.06 1.80 2.06
9 Adam 0.0002 Scheduler B 1.06 1.91 2.06

Fig. 8. CycleGAN results after 50 epochs.

preserves certain color properties in the original image during
the transformation to ensure that important context is not lost.
The cycle and identity losses are shown in equations 2 and 3
respectively.

ε(l, k) =
∥∥Xl −Gkl(Glk(Xl))

∥∥
1

CL(l, k) =
1

N · C ·H ·W
·
∑

N,C,H,W

ε(l, k) (2)

ε(l, k) =
∥∥Xl −Gkl(Xl)

∥∥
1

IL(l, k) =
1

N · C ·H ·W
·
∑

N,C,H,W

ε(l, k) (3)

For example, the generator that transforms an image from
domain A to domain B was trained using the CL(A,B) and
IL(A,B) losses.

B. Baseline

The traditional implementation of neural style transfer uses
a CNN to distinguish an image’s style from its content, which
in turn allows us to generate new images that replicate the
content and style of different images. In [2], style represen-
tations are extracted separately from content representations
using traditional CNNs. The CNNs hierarchically stack to form
style-content representations, it is possible to form style rep-
resentations by capturing the correlation between the feature
maps of the convolution layers.



Fig. 9. Fast Style Transfer with VGG-16 as backbone.

The major disadvantage of traditional style transfer is that it
is computationally expensive since each step of the optimiza-
tion problem requires a forward and backward pass through the
pre-trained network. To overcome this burden, we add another
feed forward network to approximate the solution.

The Fast Style Transfer solution proposed in [6] serves as
our baseline as the transformer network proposed is able to
learn the style representation of the artist images hundreds of
times faster than the architecture proposed in [2].

Our baseline model consists of a transformer net as shown
in [4] with a few changes in the up-sampling block. Instead of
using fractional-strided convolutions, we use nearest neighbour
interpolation along with instance normalization. The baseline
model is shown in figure 9. The pre-trained VGG-16 is used
as our backbone network for extracting the content and style
representation of the images. Instead of using a random noise
image for calculating the style and content loss we use the
image out from our transformer net as it leads to faster
convergence. The transformer network is trained while the
backbone is freezed. During the inference time the transformer
net is used to generate the style image. We trained our baseline
using COCO 2017 dataset [7]. The dataset contains 123,287
images of 91 different object categories. We use COCO as our
content dataset we choose 4 different artists images to develop
models.

The style loss is computed in the same way as in [2].
For example, to calculate instead of computing the style
loss using a random noise image we use a transformer net
generated content image to calculate the style loss. We take
up a convolution layer of our choice and generate the feature
maps. Then we take the feature maps for the style image and
the same is generated for the content image and calculate the
correlations for each individual images. The correlation matrix
is called the gram matrix. We take the MSE between the gram
matrices of the style image and the content images. This is our
style loss.

II. EXPERIMENTAL SECTION

A. Metrics

Our primary goal while defining the metric was to quantita-
tively measure how well the style transferred from one domain
to another. We decided to use the style loss from the Fast Style
Transfer Network as the quantitative measure for the same. For
images that had a better style transfer, the value of the style
loss function would be lower. To measure this, we conducted

two different baseline experiments to prove the efficacy of our
CycleGAN algorithm that we had written.

The first baseline shown in figure 10 was used as a sanity
check to evaluate the efficacy of the baseline itself. In this
method, we measured the style loss output of an image
generated by our CycleGAN, trained for 50 epochs and bench-
marked this against a real painting of the artist whose style we
had transferred. We also measured the loss given by a image
with a random style for control. Intuitively, we expected the
loss functions to have the highest and lowest values for the
random image and an image of a real painting, with the loss
of the generated by our CycleGAN to lie somewhere in the
middle. We performed this experiment for the Ukiyoe and
Monet Painting Data sets.

For the second baseline shown in figure 10, we measured
the style loss values for the our CycleGAN algorithim as
compared to a pre-Trained CycleGAN algorithm and the
output of the Fast Style Network. The aim was to show that
the CycleGAN network transferred the style better than that
of the Fast Style Network. This meant that the CycleGAN
was able to find a lower value of the Style Loss than the FST
Network even when not explicitly trained to do so.

Fig. 10. The images used for Baseline 1 (B1) and Baseline 2 (B2)
computations

B. Model Selection

The hyper-parameters to be optimized are the number of
T Blocks in the generator, the gradient descent optimizer to
be used, the learning rate, and the learning rate scheduler.
The performance metric is the absolute difference between
the style loss (SL) of an original painting and the style loss
of an image generated by CycleGAN. Results are shown in
table I. Learning rate scheduler A decays the learning rate by a
factor of 0.7 every 10 epochs, while learning rate scheduler B
does not decay the learning rate at all. The CycleGAN model
was able to learn some sense of style for the Monet, Ukiyo-
e, and Cezanne paintings, but it clearly did not for the van
Gogh paintings, as its style loss was higher than that of the
original image before it was transformed. Additionally, the
combination of the Adam optimizer, 9 T Blocks, a learning
rate of 0.0002, and scheduler B lead to the best results
on average. Hence, this combination was chosen for further
experimentation.



TABLE II
BASELINE 2 COMPARISON

Style Loss Pre-trained CycleGAN
FST

(10−5) CycleGAN (50 epochs)

Ukiyo-e Dataset 3.7 3.9 4.5

Monet Dataset 73.2 74.9 73.7

Winter to Summer 70.9 50.7 -

C. Performance and Comparison to Baseline

The authors of the original CycleGAN paper were able
to achieve satisfactory results after 200 epochs of training.
However, because CycleGAN consists of 4 networks and due
to a lack of computational resources, we were only able to train
CycleGAN once for 200 epochs on a single dataset and for 50
epochs on other datasets. We trained CycleGAN on paintings
from Claude Monet, Vincent van Gogh, Paul Cezanne, and
the Japanese art genre Ukiyo-e [8] for 50 epochs, as shown in
figure 8. Two different comparisons to baselines are given,
one in table I and the other in table II. We observe that
our CycleGAN model is able to produce better results than
baseline 1 and is successfully able to produce a smaller style
loss than the original image before it is transformed. We used
the model in the previous section to benchmark in baseline 2
as shown in table II and achieved comparable results to the
pre-trained CycleGAN and FST. We were not able to train to
200 epochs, due to limited computational resources. However,
we were able to train our network for 200 epochs for one
dataset and did achieve better loss results on the Winter to
Summer Dataset, which is also visually intuitive in 11.

Fig. 11. CycleGAN results after 200 epochs.

REFERENCES

[1] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks,” Nov. 15, 2018. arXiv: 1703 . 10593.

[Online]. Available: http : / / arxiv. org / abs / 1703 . 10593
(visited on 04/28/2020).

[2] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural
algorithm of artistic style,” arXiv:1508.06576 [cs, q-bio],
Sep. 2, 2015. arXiv: 1508 . 06576. [Online]. Available:
http://arxiv.org/abs/1508.06576 (visited on 04/29/2020).

[3] (). PyTorch. Library Catalog: pytorch.org, [Online].
Available: https : / / www . pytorch . org (visited on
04/28/2020).

[4] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance nor-
malization: The missing ingredient for fast stylization,”
arXiv:1607.08022 [cs], Nov. 6, 2017. arXiv: 1607.08022.
[Online]. Available: http : / / arxiv. org / abs / 1607 . 08022
(visited on 04/30/2020).

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,”
arXiv:1611.07004 [cs], Nov. 26, 2018. arXiv: 1611 .
07004. [Online]. Available: http : / /arxiv.org/abs /1611.
07004 (visited on 04/30/2020).

[6] J. Johnson, A. Alahi, and F. Li, “Perceptual losses
for real-time style transfer and super-resolution,” CoRR,
vol. abs/1603.08155, 2016. arXiv: 1603.08155. [Online].
Available: http://arxiv.org/abs/1603.08155.

[7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.
Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco:
Common objects in context,” Lecture Notes in Computer
Science, pp. 740–755, 2014, ISSN: 1611-3349. DOI: 10.
1007/978-3-319-10602-1 48. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-10602-1 48.

[8] (). Index of /˜taesung park/CycleGAN/datasets, [Online].
Available: https : / /people .eecs .berkeley.edu/∼taesung
park/CycleGAN/datasets/ (visited on 05/01/2020).

https://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
https://www.pytorch.org
https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/

	Model Training and Selection
	The Model
	Baseline

	Experimental Section
	Metrics
	Model Selection
	Performance and Comparison to Baseline


